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I. Amyloid Hypothesis

Alzheimer's disease (AD) is an age-related neurodegenera
tive disease that causes a global loss of cognitive function
and behavioral deficits. Although cholinesterase inhibitors
can improve cognitive function slightly (Knopman and Morris,
1997), truly efficacious drugs for AD treatment and/or preven
tion are not yet available. However, the etiology of AD is
beginning to yield to scientific inquiry. Plausible strategies
for treatment and/or prevention have been formulated, but
await further research. In the United States, AD afflicts four
million individuals and imposes an annual tab of $80-100
billion (Hoyert and Rosenberg, 1999). Thus, one can readily
appreciate the importance of recent progress in AD research.
This chapter summarizes the current understanding of AD
etiology and pathogenesis.

AD cases can be classified as "familial" or "sporadic."
Familial AD occurs in both early-onset (before age 65) and
late-onset kindreds. In 1990, a mutation in the amyloid precur
sor protein (APP) was reported to cause hereditary cerebral
hemorrhage with amyloidosis Dutch type (Levy et al., 1990).
This finding linked amyloid deposition to an APP mutation for
the first time and enabled investigators to embrace the idea that
plaques were an important cause of neurodegeneration, rather
than merely end products of a neurodegenerative process.
Later, APP mutations were found to cause AD in a small
number of early-onset, autosomal-dominant pedigrees (see
Table 22.1).

The neuropathological hallmark of AD is the presence of
neuritic plaques in brain parenchyma and cerebral blood ves
sels. Neuritic plaques consist of a protein core, surrounded by
degenerating neurites, astrocytes, and activated macrophages.
Alzheimer brain is also characterized by the presence of neu
rofibrillary tangles (NFT; accumulations of paired helical fila
ments within neuronal cell bodies), the loss of synapses and
neurons, and reduced neurotransmitter concentrations. Choli
nergic neurons are especially vulnerable to cell death; these
neurons arise in the basal forebrain and terminate in the hippo-

Functional Neurobiology of Aging

campus and cerebral cortex. Neurofibrillary tangles consist pri
marily of ubiquitin and tau, a microtubule-associated protein.

The core protein of plaques is A{3, a peptide derived from
the amyloid precursor protein (APP), which is 39-43 amino
acids long (Glenner and Wong, 1984). Plaques also contain
numerous other components, including apolipoprotein E (Namba
et al., 1991), aJ-antichymotrypsin (Abraham et al., 1988), ser
um amyloid P (Coria et al., 1988), interleukin-l (Griffin et al.,
1995), basic fibroblast growth factor (Gomez-Pinilla et al.,
1990), armacroglobulin (Bauer et al., 1991), low-density
lipoprotein-related protein (LRP) (Tooyama et al., 1993), and
perlecan (a heparin sulfate proteoglycan). Evidence for an
inflammatory contribution to AD is provided by the presence
of approximately 40 proteins known to playa role in inflam
mation (McGeer et al., 1996). Plaques are enriched in the
small molecules, zinc, copper, and iron (Lovell et al., 1998).

Within plaques, the primary form of A{3 is A{34z, a highly
insoluble peptide that readily adopts a {3-pleated sheet confor
mation (lwatsubo et al., 1994, 1995; Fukumoto et al., 1996).
A{3 molecules assemble into fibrils, which then pack into a
highly ordered, crystalline-like lattice known as amyloid. The
term "amyloid" can be applied to deposits derived from any
protein in which a similar arrangement of molecules occurs.
In addition to a core protein, all amyloid deposits are marked
by the presence of heparan sulfate proteoglycans. "Diffuse"
plaques are those in which A{3 molecules have not assembled
into fibrils. Generally speaking, diffuse plaques are not surro
unded by dystrophic neurites, activated microglia, or astro
cytes. They occur in greater numbers than neuritic plaques
and may be neuritic plaque precursors (Mackenzie, 1994).
Neuritic plaque formation also occurs in Down syndrome
and, to a lesser extent, in normal aging (Selkoe, 1991).

The "amyloid hypothesis" refers to the proposition that
events leading to the manifestation of AD originate with the
deposition of A{3 in amyloid deposits. Although flawed (or in
complete), this hypothesis is now supported by a large body
of experimental work. It is worth noting that amyloid depo
sition occurs in other disorders such as Down syndrome,
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TABLE 22.1 Amyloid Precursor Protein Mutations Associated with AD
or Stroke

II. Genetic Contributions to the
Etiology of AD

Creutzfeldt-Jacob disease, Gertsmann-Straussler-Scheinker
disease, type II diabetes, familial amyloid polyneuropathy,
and multiple myeloma. Aberrant protein deposition is a com
mon theme in neurodegenerative disease (Kaytor and Warren,
2000). In Parkinson's disease, two mutations in the o-synu
c1ein gene that cause early onset disease also accelerate a
synuclein aggregation (Narhi et al., 1999).

Clearly, both environmental and genetic factors contribute to
the risk of AD. Evidence from twin studies supports a role for
environmental variables in AD (Breitner et al., 1995; Nee and
Lippa, 1999). Among the factors suggested to modify the risk
for AD are head injury (Molgaard et al., 1990; Roberts et al.,
1994), educational attainment (Stern et al., 1992; Cobb et al.,
1995; Callahan et al., 1996; Geerlings et al., 1999), depression
(Kokmen et al, 1996; Chen et al., 1999), smoking (Hebert
et al., 1992; Lee, 1994; Hillier and Salib, 1997; Merchant
et al., 1999), vitamin E consumption (Vatassery et al., 1999),
diabetes (Leibson et al., 1997) and hypertension (Skoog et al.,
1998; Behl, 1999). A review of the literature cited earlier will
reveal that the legitimacy of many so-called environmental
risk factors is open to debate. Stronger, but not conclusive,
evidence indicates that estrogen replacement (Birge, 1997;
Haskell et al., 1997) and the chronic use of nonsteroidal
anti-inflammatory drugs may reduce the risk of AD (McGeer
et al., 1996). AD and peripheral vascular disease share several
risk factors in common; this indicates that impaired cholesterol
metabolism may playa role in AD etiology (McKeon-O'Mal
ley et al., 1998). It remains to be determined whether any
environmental factor is sufficient to cause AD in the absence
of a permissive genotype.

On the genetic front, the identification of several AD-linked
genes has yielded important insights into the etiology of AD,
and steady progress continues to be made in this area. Female
gender is a risk factor for AD, even when the longer life span
of females is taken into account (Letenneur et al., 1999).
Almost all individuals with Down syndrome (trisomy 21)
develop AD in midlife (Katzmann, 1986), presumably due to
the overexpression of the APP gene on chromosome 21. The
linkage of specific genes to AD risk is discussed in the follow
ing section.

TABLE 22.2 Genes in Which Mutations or Polymorphisms May Modify
the Risk of ADa

aThe genes may be associated with AD. Cited references include
articles that report the association of a particular gene with AD, or a lack of
such an association.

To date, seven of the genes linked to AD include: the amy
loid precursor protein (Chartier-Harlin et al., 1991; Goate et al.,
1991; Murrell et al., 1991), presenilin 1 (PSI) (Sherrington
et al., 1995), presenilin 2 (PS2) (Levy-Lahad et al., 1995b),
apolipoprotein E (Corder et al., 1993), armacroglobulin
(Blacker et al., 1998; Liao et al., 1998), LRP (also known as
the a2M receptor) (Kang et al., 1997; Wavrant-DeVrieze et al.,
1997; Hollenbach et al., 1998), and tau (Lilius et al., 1999;
Bullido et al., 2000). Importantly, four of these proteins are
related to each other: APP, ApoE, and a2-macroglobulin are
ligands for LRP.

Preliminary evidence has been presented for the involve
ment of other genes with AD (see Table 22.2). However,
data do not permit firm conclusions to be drawn about other
genes at this time. Deterministic mutations (i.e., mutations
that can cause AD with 100% penetrance) occur in the genes
for the amyloid precursor protein, presenilin I and presenilin 2,
but these mutations account for only a small percentage of
total AD cases. Mutations in APP and the presenilins cause
AD by increasing the extracellular load of Af342 (Scheuner
et al., 1996). Polymorphisms in the genes for apolipoprotein

Alvarez et at. (1999)

Reference

Brandi et at. (1999)

Ballerini et at. (1999)

Baum et at. (1999)

Davis et at. (1997); Egensperger et at.
(1997); Chagnon et at. (1999)

Reynolds et at. (1999)

Kunugi et at. (1998)

Dahiyat et at. (1999)

Oliveira et at. (1998, 1999); Li et at.
(1999)

Okuizumi et at. (1995, 1996); Pritchard
et at. (1996)

Haines et at. (1996); Talbot et at. (1996)

Farrer et at. (1998); Montoya et at. (1998)

Brindle et at. (1998); Crawford et at.
(1998); Hiltunen et at.(1998); Singleton
et at. (1998); Tilley et at. (1999)

Papassotiropoulos et at. (1999)

Sheu et at. (1999)

Angiotensin I-converting
enzyme

exj-Antichymotrypsin

Bleomycin hydrolase

Butyrylcholinesterase K

HLA

Estrogen receptor ex gene

Very low density
lipoprotein receptor

Lipoprotein lipase

Mitochondrial genome

Myeloperoxidase

Neurotropin-3

Nitric oxide synthase 3

Serotonin transporter gene

Cathepsin D

Dihydrolipoyl succinyltrans
ferase (DLST)

Gene

Reference

Mullan et at. (1992)

Hendricks et at. (1992)

APP mutation implicated in
hereditary cerebral hemorrhage with
amyloidosis-Dutch (Levy et al., 1990)

Ancolio et at. (1999)

Eckman et at. (1997)

Goate et at. (1991)

Murrell et at. (1991)

Chartier-Harlin et at. (1991)

Pathogenic mutation

KIM 670/671 NIL (Swedish)

A682G (Flemish)

E693Q (Dutch)

V715M (French)

1716V

V7171 (London)

V717F

V717G
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E, armacroglobulin, LRP, and tau are known to increase
the risk of AD. A brief description of each of these genes is
given.

A. Amyloid Precursor Protein

As indicated earlier, the core protein of neuritic plaques, A{3,
is derived from APP. The APP gene is located at the boundary
of 21.q.3 and 21.q22.1 (Kang et al., 1987) and is widely
expressed in human tissues (Tanzi et al., 1988). Ten transcripts
can be produced by alternative splicing of 19 exons (Wisniews
ki et al., 1994). However, A{3 cannot be generated by alterna
tive splicing (Lemaire et al., 1989). Three major transcripts
contain the A{3 sequence, and these encode proteins with
695, 771, or 770 amino acids (APP695, APP75 b APPn o). The
expression of APP695 is confined to the brain (Sola et al.,
1993). APP75 1 and APPn o contain a region with 50% homol
ogy to a Kunitz protease inhibitor domain.

The APP gene lacks a TATA box and has a high GC content,
features characteristic of a housekeeping gene (Salbaum et al.,
1988). Gene expression produces a protein with the follow
ing domains: a signal peptide for transport of APP into the
endoplasmic reticulum, a cysteine-rich sequence, a sequence
including many negatively charged residues (glutamic acid
and aspartic acid), and an uninterrupted stretch of seven threo
nine residues (Kang et al., 987) (see Fig. 22.1). A zinc II-bind
ing site is located between the cysteine-rich domain and the
negatively charged region (Bush et al., 1993). Two consensus
sequences for N-linked glycosylation are located at amino
acids 467-469 and 496-498. APP also contains a potential
heparin-binding site (Small, 1994). APP is modified by post
translational mechanisms including N- and O-glycosylation
(Weidemann et al., 1989; Pahlsson et al., 1992), sulfation of
tyrosine residues (Weidemann et al., 1989), and phosphoryla
tion (Oltersdorf et al., 1990). APP matures in the endoplasmic
reticulum and the Golgi and then becomes inserted into the
plasma membrane (Weidemann et al., 1989).

APP is a member of a family of highly conserved proteins.
Other members of this family include amyloid precursor pro-

tein-like protein (APLPl) and APLP2 (Sprecher et al., 1993;
Wasco et al., 1993), but the two latter proteins do not encode
A{3. APP plays a role in many normal functions, including
wound healing (Smith et al., 1990; Van Nostrand et al., 1990),
proliferation (Saitoh et al., 1989; Ninomiya et al., 1993), ad
hesion (Schubert et al., 1989; Breen et al., 1991; Chen and
Yankner, 1991; Ghiso et al., 1992), neurite extension (Araki
et al., 1991; Milward et al., 1992; Small, 1994), survival under
stress (Mattson et al., 1993; Yamamoto et al., 1994), and sy
naptic plasticity (Mattson, 1994). Processes involved in the
production of A{3 from APP are discussed under Section III.

B. Apolipoprotein E

Apolipoprotein E is a 34 kDa (299 residues) protein known
primarily for its role in lipid transport (Mahley and Huang,
1999). The gene for ApoE has been mapped to chromosome
19 (Das et al., 1985). Three polymorphic alleles, E2, E3, and
E4 (corresponding to the proteins ApoE2, ApoE3, and
ApoE4), occur at frequencies of 8, 75, and 15%, respectively.
ApoE3 has Cysl 12 and Arg152

; in ApoE2, Argl 58 is replaced by
cysteine, and in ApoE4 , Cysl 12 is replaced by arginine. In the
periphery, ApoE is synthesized primarily in the liver. ApoE
cannot penetrate the blood-brain barrier, but is manufactured
within the brain by astrocytes (Pitas et al., 1987). Apolipopro
tein E is a ligand for three cell surface receptors: the low-den
sity lipoprotein (LDL) receptor, the low-density lipoprotein
related protein, and the very-low-density lipoprotein (VLDL)
receptor.

The E4 allele of apolipoprotein E increases the risk of AD in
a dose-dependent manner and lowers the age at onset (Corder
et al., 1993). This finding has been confirmed repeatedly in a
host of ethnic groups around the world. However, it is clear
that apolipoprotein E alone does not cause AD because a pro
portion of elderly homozygotes are unaffected (Roses et
al., 1994). Interestingly, the E4 allele has also been shown to
increase the risk of cardiovascular disease as well as AD (Lam
bert et al., 2000). Mutations occurring in noncoding regions of
the ApoE gene are also associated with AD (see Table 22.3). In
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TABLE 22.3 Apolipoprotein E Polymorphisms Associated with AD

Polymorphism

E2/E3/E4 polymorphism

APOE*4 Pittsburgh (APOE*4P) (this is a missense mutation,
L28P, caused by a T ---> C substitution in exon 3)

ThllE47 cs polymorphism: G to mutation occurs at -186 bp in
relation to the TATAbox; this polymorphism is located in a
consensus sequence for the transcription factor ThlE47

SECTION II Memory

Reference

The E4 allele is associated with sporadic and late-onset AD. This finding
has been confirmed in more that 100 studies (Corder et al., 1993)

All APOE*4P carriers identified thus far also carry E4. However, the risk of
AD is five-fold greater in E4 carriers who also carry APOE*4P than in those
who bear the E4 allele alone (Kamboh et al., 1999)

The presence of at least one T allele increases the risk of AD
(Lambert et al., 1998)

contrast to the E4 allele, the E2 allele decreases the risk of AD
(Corder et al., 1994; Talbot et al., 1994).

C. Presenilin ] and Presenilin 2

Mutations occurring within the homologous, transmembrane
proteins PSI and PS2 cause early-onset familial AD with
100% penetrance. About 70 such mutations have been identi
fied in PSI, whereas only 5 have been observed in PS2 (see
Tables 22.4 and 22.5; Table 22.4 includes only a partial list
of all PS] mutations). Remarkably, mutations in PSI and
PS2 increase the A(342/A(34o ratio, or total A(3 both in vitro
and in vivo (Borchelt et al., 1996; Lemere et al., 1996;
Mann et al., ]996; Scheuner et al., ]996; Citron et al., 1997,
]998; Tomita et al., 1997). The presenilins may be -y-secre
tases, the enzymes that generate final cleavage in the release
of A(3 from APP (Wolfe et al., ]999).

PS] and PS2 share a similar pattern of gene expression.
Both proteins are expressed primarily within neurons and are
localized to the endoplasmic reticulum and Golgi (Kovacs
et al., ]996; Blanchard et al., ]997).

The gene for PS] is located on chromosome ]4q24.3 and
encodes a 43 to 45 kDa protein, 467 amino acids long
(George-Hyslop et al., 1992; Schellenberg et al., ]992). The
PS2 gene has been mapped to chromosome ]q42.1 and
encodes a 53 to 55 kDa protein, 448 amino acids long (Levy
Lahad et al., 1995a,b; Takano et al., ]997). The presenilins are
predicted to contain six (Lehmann et al., 1997), seven (Dewji
and Singer, ]997), or eight (Li and Greenwald, 1998) trans
membrane domains and a large hydrophilic loop. The N-term
inal, C-terminal, and the large hydrophilic loop of PSI
protrude from the endoplasmic reticulum membrane into the
cytoplasm (Doan et al., ]996).

The presenilins are cleaved endoproteolytically to produce
N-terminal fragments and C-terminal fragments, with approx
imate molecular masses of 30 and 20 kDa, respectively (Thina
karan et al., ]996). This cleavage occurs at a site within the
large hydrophilic loop. N- and C-terminal fragment associate
with one another in a l :I ratio, forming a stable complex
(Capell et al., 1998). Measurable quantities of the full-length
proteins are difficult to detect by conventional methods,
strongly suggesting that the cleavage products are the physio
logically relevant entities.

Potential roles for the presenilins have been suggested in
protein processing, Notch signaling and development, and

apoptosis (Mattson et al., ]997, 1998; Guo et al., 1998a,b).
Mice homozygous for a null mutation in the murine homolo
gue of PSI (i.e., PS] knockout mice) die within minutes of
birth (Shen et al., 1997). These animals exhibit gross skeletal
defects, cerebral hemorrhage, and massive neuronal loss. The
lethal phenotype of these animals indicates that PS] plays an
essential role in normal development.

D. iX2~Macroglobulin

a2-Macroglobulin (a2M) is a "pan-protease" inhibitor
involved in the clearance of proteins from the blood via endo
cytosis (Borth, ]992). a2M is composed of four identical sub
units (l80kDa), each of which contains a 25 residue "bait
region," a cytokine-binding domain, and a receptor-binding
domain. The bait region contains an internal cyclic thiol ester
that is cleaved when a protease binds to a2M. This cleavage
provokes a conformational change in a2M that permits it to
enclose or "capture" the protease and to make its cytokine
binding and receptor-binding domains accessible for ligand
binding. Activated a2M binds to its plasma membrane recep
tor, LRP, to deliver its captured protease. Ligand-LRP com
plexes are internalized via clathrin-coated pits and are then
directed into an endosomal/lysosomal compartment (Kowal
et al., ] 989). There, ligands are released from LRP and de
graded; LRP is recycled to the plasma membrane.

The gene for a2M is located on chromosome 12 (Fukushima
et al., ]988). An AD-linked polymorphism is located in the 5'
splice site of exon ]8. Two polymorphisms, occurring in this
locale, a2M-2 and a2M-], specify the presence or absence
of a pentanucleotide deletion. Inheritance of a single a2M-2
allele increases the risk of AD three- to fourfold, but does not
change the age at onset (Blacker et al., 1998). To date, it is
not known whether the risk of AD increases with a2M-2
dosage. AD is also associated with a second polymorphic
site, Vall OOO(GTC)/Ile1000(ATC), located near the cyclic
thiol ester (poller et al., 1992). AD risk is increased by the pre
sence of a valine residue at this site (Liao et al., 1998). The
risks conferred by the VallOOO(GTC) allele of a2M, and the
E4 allele of ApoE, are independent and additive.

E. Lipoprotein-Related Protein

As described previously, LRP is a plasma membrane re
ceptor for APP, ApoE, and a2M. Importantly, an A(3-serine
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TABLE 22.4 APartial List of Presenilin I Mutations Associated with AD
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Mutation Reference

A79V Cruts et al. (1998)

V82L Campion et al. (1995)

V96F Kamino et ai. (1996)

FlO5L Finckh et at. (2000)

YIl5H Campion et ai. (1995)

YIl5C Cruts et ai. (1998)

T116N Romero et al. (1999)

P117L Wisniewski et al. (1998)

E120D Poorkaj et at. (I998b)

QI20D Reznik-Wolf et al. (1996)

E120K Reznik-Wolf et al. (1998)

E123K Yasuda et at. (1999)

N135D Crook et al. (1997)

MI39K Dumanchin et al. (1998)

MI39T Campion et al. (1995)

Ml39I Boteva et ai. (1996)

I143F Rossor et al. (1996)

I143T Cruts et ai. (1995)

MI46I Jorgensen et at. (1996)

MI46L Sherrington et ai. (1995)

MI46V Alzheimer's Disease Collaborative
Group (1995)

T147I Campion et al. (1999)

HI63R Sherrington et ai. (1995)

HI63Y Perez-Tur et ai. (1995); Axelman
et al. (1998)

WI65C Campion et al. (1999)

SI69P Ezquerra et al. (1999)

SI69L Taddei et al. (1998)

Ll71P Ramirez-Duenas et at. (1998)

Ll73W Campion et ai. (1999)

El84D Yasuda et at. (1997)

G209R

G209V

I213T

A231T

Sugiyama et ai. (1999)

Poorkaj et at. (I998b )

Kamino et ai. (1996)

Campion et ai. (1995)

Mutation

A231V

M233L

M233T

L235P

A246E

L250S

A260V

L262F

C263R

P264L

P267S

R269G

R269H

E273A

R278T

E280A

E280G

L282R

A285V

L286V

E318G

G378E

G384A

S390I

C4lOY

L424R

A426P

P436Q

To to G at intron 9

Intronic polymorphism located 3'
to exon 8

Deletion Delta9Finn

58304G>A Delta9

58304G>T Delta9

A deletion of G from the intron
four splice donor consensus
sequence

Reference

Cruts et al. (1998)

Aldudo et al. (1999)

Kwok et ai. (1997)

Campion et ai. (1996)

Sherrington et ai. (1995)

Harvey et ai. (1998)

Rogaev et al. (1995)

Forsell et al. (1997)

Wasco et at. (1995)

Campion et al. (1995)

Alzheimer's Disease Collaborative
Group (1995)

Perez- Tur et al. (1996)

Gomez-Isla et al. (1997)

Kamimura et at. (1998)

Kwok et al. (1997)

Alzheimer's Disease Collaborative
Group (1995)

Alzheimer's Disease Collaborative
Group (1995)

Aldudo et ai. (l998a)

Aoki et at. (1997)

Sherrington et ai. (1995)

Reznik-Wolf et al. (1998); Aldudo
et ai. (l998b);
Mattila et al. (1998)

Besancon et al. (1998)

Cruts et al. (1995)

Campion et ai. (1999)

Sherrington et ai. (1995)

Kowalska et al. (1999)

Poorkaj et at. (I998b)

Taddei et ai. (1998)

Nishiwaki et at. (1997)

Wragg et ai. (1996); but see
Cai et ai. (1997),
Tysoe et al. (1997), Sorbi
et ai. (1997)

Crook et ai. (1998); Prihar
et al. (1999)

Sato et ai. (1998)

Perez- Tur et ai. (1995)

Tysoe et ai. (1998); PS I truncating
mutation
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F. Tau

TABLE 22.5 Presenilin 2 Mutations Associated with AD

protease-a2M pathway is one of several mechanisms by which
A(3 is cleared (Qiu et al., 1999). LRP belongs to a family of
proteins that includes the LDL receptor, megalin (also known
as gp330), the VLDL receptor, and the vitellogenin receptor
(Krieger and Herz, 1994).

The diagnosis of AD in postmortem brain requires the pre
sence of both NFT and neuritic plaques. Unlike plaques, NFT
are not specific to AD; these entities occur in many neurode
generative disorders, including supranuclear palsy, dementia
pugilistica, corticobasal degeneration, and fronto-temporal de
mentia with parkinsonism linked to chromosome 17 (FTDP
17) (Goedert et al., 1997). However, NFT density correlates
well with dementia severity, whereas plaque density does not
(Braak and Braak, 1991).

The primary protein component of NFT is tau (45-60 kDa),
a protein that promotes the stabilization of microtubules
(Weingarten et al., 1975). In the central nervous system, alter
native splicing of the tau gene results in the expression of six
isoforms primarily (see Fig. 22.2). A seventh isoform contain
ing a "big tau insert" is expressed prominently in the periph
eral nervous system and to a much lesser extent in the central

III. Pathogenesis

nervous system (Georgieff et al., 1993). Each isoform pos
sesses either three or four microtubule-binding domains
(repeat units of 31 amino acids, encoded by exon 10) and 0,
1, or 2 different amino-terminal inserts. Differential expression
of tau isoforms occurs during development (Couchie et al.,
1988; Kosik et al., 1989). Within NFT, tau is hyperphosphory
lated (Grundke-Iqbal et al., 1986), which prevents its binding
to microtubules (Bramblett et al., 1993).

The finding made in 1991 that mutations in the amyloid pre
cursor protein gene can cause AD with 100% penetrance
focused attention on the role of A(3 in AD. Lately, there has
been a resurgence of interest in tau. Tau mutations have been
linked to frontotemporal dementia with parkinsonism (FTDP
17; previously known as Pick disease) (Poorkaj et al., 1998a;
Hutton et al., 1998; Spillantini et al., 1998; Iijima et al., 1999)
and to supranuclear palsy (Chambers et al., 1999). Because
plaque deposits are largely absent in FTDP-17 tauopathies,
the latter findings indicate that tau aggregation is sufficient
for neurodegeneration (Ghetti et al., 1999).

Several groups have searched for AD-linked mutations in
the tau gene without success (Crawford et al., 1999; Roks
et al., 1999). However, two reports indicate that polymorph
isms in the tau gene may increase the risk for AD when found
in combination with the ApoE E4 allele (Lilius et al., 1999;
Bullido et al., 2000).

A. Fundamental Questions in AD Research

Most of the current research in AD is designed to address
one of the following questions:

What factors regulate the cleavage of A(3from APP, and A(3
assembly into fibrils?

How does A(3, alone or in combination with other plaque
components, cause neuronal cell death?

Reference

Finckh et al. (2000)

Levy-Lahad et al. (l995a)

Finckh et ai. (2000)

Rogaev et ai. (1995)

Sato et ai. (1999)

Pathogenic mutation

Tl22P

N141I

M239I

M239V

Splice variant: mRNA lacks exon 5

352 • Microtubule-binding• • • domain

381 • First N-tennine1insert• • • ~ Second N-tennine1
410 Insert• • - I Ins erts surrounding

microtubule-binding
domain 2

1--1- 383- -1-1- 412- -1-1- 441- -
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FIG. 22.2. Schematic diagram of tau protein isoforms.
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What is the role of inflammation in the maturation of
neuritic plaques?

What is the role of tau in AD?

A thorough discussion of last three questions is beyond the
scope of this chapter (see Tolnay and Probst, 1999, for a review
of the role of tau in AD.) This chapter concentrates, how A(3 is
produced from APP, and on A(3 fibrillogenesis.

B. Amyloid, Neuritic Plaques, and Paired
Helical Filaments

Within specific brain locale, certain conditions (as yet unde
fined) permit soluble A(3 molecules to adopt a high degree of
(3-pleated sheet conformation; this alteration facilitates the
rearrangement of A(3 molecules into fibrils. Fibrils pack in
cross-(3conformation to form amyloid, a highly ordered arrange
ment of protein molecules that can be detected using Congo
Red or Thioflavin S (Kirschner et al., 1987). Neuritic plaques,
but not diffuse plaques, are visualized using these stains. Fibril
stability is critically dependent on the primary structure of the
peptide. This is exemplified by the fact that an APP mutation
associated with early-onset FAD, A(3E22Q, increases the stabi
lity of A(3 fibrils dramatically (Fraser et al., 1992).

Within plaques, A(3 molecules differ in length, exhibiting
heterogeneity at both amino (Tekirian et al., 1998) and carbox
yl termini (Jarrett et al., 1993a). Plaques contain a mixture of
A(3 molecules; A(342 and A(34o are the predominant species in
extracellular neuritic plaques, whereas the vascular amyloid
consists primarily of A(339-40 (Dickson, 1997). As indicated
earlier, a highly amyloidogenic form of A(3, A(342, is the initial
A(3 species deposited in neuritic plaques (Iwatsubo et al.,
1995). Diffuse plaques contain A(34b but not A(340 (Cummings
et al., 1996). Plaque enlargement requires a nidus for further
protein deposition; A(342 may serve as a "seed," which permits
the deposition of A(340 (Jarrett et al., 1993b). A(340 constitutes
the bulk of the A(3 produced by normal metabolism (Haass
et al., 1992; Seubert et al., 1992).

Neuritic plaques can be surrounded by dystrophic neurites
or by neurites containing paired helical filaments (PHF-type
neurites). [PHF occurring within neurites are essentially equi
valent to those found in neuronal cell bodies. In AD, PHF
occur in three locations: within plaques, neurites, or neuronal
cell bodies (Braak et al., 1986). PHF-type neurites found in the
absence of plaques are known as "neuropil threads" (Dickson,
1997).] Among dystrophic neurites, diverse neuronal types are
represented (Struble et al., 1987). In contrast, there is a hierar
chy of neuronal types that are susceptible to PHF formation
(Price et al., 1991). Both dystrophic neurites and PHF-type
neurites are recognized by ubiquitin-specific antibodies, but
only the latter are recognized by the Alz-50 antibody.

C. Ap Formation, Aggregation, and Clearance

I. APP Cleavage Sites

APP is cleaved within A(3 at Lys687_Leu688 (APPn o number
ing), by one or more "o-secretases." This cleavage generates a
soluble N-terminal fragment (sAPP",) and a membrane-asso
ciated C-terminal fragment. Thus, o-secretase-mediated clea-
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vage of APP precludes the production of A(3. The amino and
carboxy termini of A(3 are produced by the actions of "(3
secretase" and "'f-secretase," respectively. As in the case of
o-secretase, (3-secretase-mediated cleavage of APP produces
an amino-terminal fragment (sAPP(3) and a membrane-asso
ciated C-terminal fragment. The "p3" peptide (3 kDa) is cre
ated when the C-terminal fragment produced by o-secretase
cleavage becomes a substrate for 'f-secretase (Haass et al.,
1993). The p3 sequence may be amyloidogenic (Lalowski
et al., 1996; Dickson, 1997). The cleavage of APP by 'f-secre
tase is unusual in that it occurs within the transmembrane
domain of APP. A(3and p3 are normal constituents of biologi
cal fluids (Shoji et al., 1992). Secreted sAPP", protects cells
from toxic insults (Goodman and Mattson, 1994; Furukawa
et al., 1996). In this regard, it may be much more effective
than sAPP(3 (Barger and Mattson, 1996).

After its synthesis on ribosomes, APP is directed into the
endoplasmic reticulum by its signal peptide (Kang et al.,
1987). During its transit through the constitutive secretory
pathway (endoplasmic reticulum, Golgi, and trans-Golgi net
work), APP is phosphorylated on its ectodomain. A small per
centage of total holoprotein is inserted into the plasma
membrane, where it is subject to cleavage by a- or (3-secre
tases (Selkoe, 1998). Uncleaved holoprotein and the C-term
inal fragments remaining in the plasma membrane after a
secretase or (3-secretase cleavage (C83 and C99, respectively)
are reintemalized via clathrin-coated vesicles. The latter mole
cules can be recycled to the cell surface or enter an endosomal/
lysosomal pathway.

2. o-Secretase-Medlated Cleavage of APP

APP has a hydrophobic sequence near its carboxyl terminus
(about 23 residues long), which directs its insertion into the
plasma membrane and internal membranes of the endoplasmic
reticulum, Golgi, and trans-Golgi network (Selkoe, 1998). a
Secretase-mediated cleavage of APP occurs both at the cell
surface and within the constitutive secretory pathway. This
cleavage does not depend on a specific sequence of amino
acids; rather, it cuts APP at a specific distance from the plasma
membrane (Maruyama et al., 1991).

Total o-secretase activity can be divided into PKC-indepen
dent and PKC-dependent components (Buxbaum et al., 1994),
which represent basal and stimulated e-secretase activity,
respectively. PKC-independent regulation of a- secretase acti
vity involves the elevation of intracellular calcium (Buxbaum
et al., 1994). Several metalloproteases belonging to the ADAM
family have been shown to possess o-secretase-like activity;
among these are TACE (tumor necrosis factor", converting
enyme, also known as ADAM-17), MDC9, and ADAM-lO.
ADAM metalloproteases are membrane-anchored proteins
that contain a catalytic domain, an autoinhibitory domain, a
disintegrin-like domain, a cysteine-rich sequence, and epider
mal growth factor-like sequence. TACE, MDC9, and ADAM
10 also possess a consensus sequence (HEXXH) for a zinc
binding domain. TACE mediates most cellular PKC-dependent
o-secretase activity (Buxbaum et al., 1998; Lammich et al.,
1999). MDC9 mediates both basal and PKC-induced cleav
age of APP695 at the o-secretase site, and inhibition of
MDC9 increases (3-secretase cleavage (Koike et al., 1999).
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Overexpression of ADAM-lO in HEK 293 cells stimulates
both basal and PKC-dependent e-secretase activity (Lammich
et al., 1999).

3. Cleavage of A(3 from APP

There are several pathways for the production of A(342 and
A(340. A(34o is generated in recycling endosomes following
reintemalization from the cell surface (Koo and Squazzo,
1994). Both peptides are produced in the secretory pathway
(Chyung et al., 1997; Wild-Bode et al., 1997), but the primary
site for A(342 production is the endoplasmic reticulum, whereas
the primary site for A(340 production is the trans-Golgi net
work (Hartmann et al., 1997). Intracellular production of A(3
may be unique to neurons because nonneuronal cells produce
significant amounts of A(342 and A(340 only at the cell surface
(Hartmann et al., 1997).

Four groups independently identified an unusual membrane
bound aspartyl protease as the elusive (3-secretase (Hussain
et al., 1999; Sinha et al., 1999; Vassar et al., 1999; Yan
et al., 1999). This enzyme has been named BACE «(3-site
APP-cleaving enzyme) by one group and Asp2 by another
group. Although other proteases, such as cathepsin D, can
cleave APP at the (3-secretasesite, BACE meets all the require
ments of a true (3-secretase. BACE is located within the Golgi
and endosomes and has a pH optimum of 5-5.5.

To date, -v-secretasehas not been identified. Because inhibi
tion of ,-secretase activity is a prime therapeutic major thera
peutic target, the identity of this enzyme may be known by the
time this chapter is published. Clearly, presenilin 1 is impli
cated in -y-secretase cleavage, either as an essential cofactor
or as the enzyme itself (Wolfe et al., 1999).

4. Regulation of APP Processing

The regulation of APP processing is extremely complex. It
varies across species and also differs between neuronal and
nonneuronal cell types. In nonneurona1 cell lines or nonhuman
cell lines, acetylcholine binding to muscarinic receptor sub
types concurrently increases sAPPQ production and inhibits
A(3 production (Buxbaum et al., 1992; Hung et al., 1993;
Jacobsen et al., 1994). This effect can be mimicked by phorbo1
ester, indicating the involvement of PKC in signal transduc
tion. However, in cultures of primary human cerebral neurons,
PKC activation increases the rate of sAPPQ release and in
creases the production of A(3 (LeBlanc et al., 1998). The latter
finding, in conjunction with others, indicates that distinct path
ways exist for a- and (3-secretase-mediated cleavage of APP
(Dyrks et al., 1994). PKC-induced o-secretase cleavage is
regulated by protein phosphorylation, but does not depend on
the phosphorylation of APP (Jacobsen et al., 1994). The trans
Go1gi network is the site of regulated, intracellular o-secretase
cleavage (Skovronsky et al., 2000).

5. A(3 Aggregation

A(3 aggregation is dependent on concentration, pH, and the
length of incubation in aqueous media (Burdick et al., 1992).
A(3 exists in a random conformation at low pH, a (3-pleated
sheet conformation at pH 4-7, and a random conformation at
high pH (Barrow and Zagorski, 1991; Fraser et al., 1992). The
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effect of pH on A(3 conformation indicates that A(3 aggregation
is influenced by the ionization state of key residues. Histidine
aspartic acid/glutamic acid salt bridges stabilize (3-p1eated
sheets, facilitating fibril assembly (Fraser et al., 1991). Due to
the presence of hydrophobic residues at its carboxyl terminus,
A(342 is very insoluble in water at pH 7.4 (Burdick et al., 1992).

Aqueous solutions of A(3 exhibit kinetic rather than thermo
dynamic solubility (Jarrett and Lansbury, 1993). In other
words, A(3will precipitate from apparently soluble solutions,
given sufficient time. The rate-limiting step in the formation of
amyloid is nucleation, i.e., the formation of a certain sized A(3
oligomer, which can serve as a scaffold for further aggregation
(Jarrett and Lansbury, 1992). Lag time, i.e., the time until a
solution exhibiting kinetic solubility precipitates, is directly
proportional to the size of the A(3 oligomer required for nucle
ation and inversely proportional to peptide concentration.

Biometals can induce A(3 aggregation in vitro (Bush et al.,
1994). In AD, concentrations of zinc, copper, and iron are
likely to be particularly important (for a review, see Atwood
et al., 1999). Submicromo1ar copper induces the aggregation
of A(34o at mildly acidic pH values, similar to those that might
be encountered during mild acidosis (Atwood et al., 1998).
Under acidic conditions, nanomolar concentrations of A(34o
form aggregates, which can subsequently be dissociated by
chelation or alkalinization. A(34b but not A(340, is precipitated
by copper at pH 7.4.

In vitro, low micromolar concentrations of zinc induce the
aggregation of A(340 at pH 7.4 (Huang et al., 1997). This reac
tion is mediated by dimeric A(3, potentiated by a-helical-pro
moting solvents, inhibited by multimeric forms of A(3, and
requires NaC!. At pH 7.4, zinc-induced aggregation of A(340
is reversible by chelation over the course of several precipita
tion/solubilization cycles. A(3 aggregation also occurs in acidic
solution (pH 5.5), but aggregates formed in this manner cannot
be resolubilized by alkalinization (Huang et al., 1997). In
canine CSF, half-maximal aggregation of endogenous A(3 is
produced by zinc concentrations ranging from 120 to 140 11M
(Brown et al., 1997). The ability of zinc to induce A(3 aggre
gation is dependent on the presence of a histidine residue at
position 13 (Liu et al., 1999). Neuronal depolarization can trig
ger the massive release of zinc in response to pathological
events (Howell et al., 1984), causing extracellular zinc concen
trations to rise dramatically (Tonder et al., 1990; Koh et al.,
1996). Thus, elevated zinc concentrations may facilitate A(3
aggregation in vivo.

A(3 aggregates formed in the presence of zinc are more
dense and are solubilized less easily than those formed in
the presence of copper (Moir et al., 1999). Apolipoprotein E
inhibits zinc-induced A(3 aggregation, but enhances copper
induced aggregation. Furthermore, the extent to which metal
induced aggregation of A(3occurs in vitro is altered by specific
apo1ipoprotein E isoforms. Zinc- or copper-induced A(3 aggre
gation is greater in the presence of apolipoprotein E4 than apo
lipoprotein E3. This is consistent with the increased risk for
AD conferred by the E4 allele.

6. A(3 Clearance

A(3 clearance is not well understood, but may be critically
important to AD pathogenesis. Pathways for A(3 clearance
include, but are not limited to, the following:
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In soluble fractions of human and rat brain, maximal
clearance of A(3 occurs at pH 4-5 and is mediated by cathepsin
D, an aspartyl protease (McDermott and Gibson, 1996, 1997;
Hamazaki, 1996a). Because cathepsin D requires a low pH for
catalytic activity, A(3-degradation by cathepsin D must occur
in an acidic intracellular compartment. Cathepsin D cleaves a
wild-type A(3 sequence 20 times faster than it does a mutant
A(3 sequence (a glycine for alanine substitution at position 21)
associated with early-onset AD (Hamazaki, 1996b). This sug
gests that A(3 clearance by cathepsin D may be relevant to AD.

In vitro, A(3 proteolysis by insulin-degrading enzyme occurs
at neutral pH (McDermott and Gibson, 1997).

In vivo, microglia cause A(3 degradation by releasing a
protease thought to be a member of the disintegrin family
(Mentlein et al., 1998).

A(3 can be cleared by a serine protease-a2M complex
(Narita et al., 1997; Qiu et al., 1999). Because polymorphisms
in the genes for both a2M and LRP are associated with AD, it
is tempting to speculate that A(3 might compete with other
molecules, such as cholesterol, for lysosomal clearance (Kowal
et al., 1989).

IV. Therapeutic Strategies

Although AD treatment and prevention are still in the future,
many potential therapeutic targets exist, each of which could
be implemented via several routes. These include the fol
lowing:

Inhibition of A(342 or A(340 secretion, with or without con-
comitant stimulation of sAPPQ secretion

Inhibition of A(3 aggregation or fibril formation
Resolubilization of plaques
Limitation of A(3-induced toxicity
Stimulation of A(3 clearance
Prevention or limitation of brain inflammation
Administration of neurotrophic agents
Inhibition of neurofibrillary tangle formation
Inhibition of (3-secretase or r-secretase

For a fuller discussion of potential therapeutic strategies, see
McKeon-O'Malley et at. (1998).

V. Summary

Tremendous progress has been made in the area of AD
genetics. Several other genes, yet to be unidentified, may
have a major impact on AD risk. However, it seems likely
that many more genes will be discovered, each of which
increases AD risk slightly. A poor combination of genetic
risk factors may be sufficient to cause disease or to permit det
rimental environmental factors to operate. The fact that four
genes, which alter AD risk (APP, ApoE, a2M, and LRP),
are related to each other indicates that cholesterol and other
lipids may playa role in AD etiology. We speculate that AD
may be caused by risk factors leading to sublethal vascular dis
ease. If this speculation is substantiated by further research, it
may be possible to implement lifestyle alterations for AD pre
vention. Presenilin research is likely to bring about many
important findings in area of development, as well as in AD.
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